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The non-isothermal least squares method for the evaluation of the kinetic 
parameters was generalid to non-isothermal kinetics of heterogeneous reactions. 

The kinetics of decomposition of solids is often formally described in the terms 
of the reaction order model’. As shown by Norris et al_‘, due to the non-linear appear- 
ance of the reaction order, n, in the rate equations, it is difficult to evaluate the 
kinetic parameters to whom different reliabilities are conferred, according to the 
method used for linearization. 

In this paper we try to generalize the non-linear least squares method, applied 
by Judd and Norris3. for the evaluation of kinetic parameters from isothermal data, 
to non-isothermal kinetics_ 

Let us consider the functional relationships 

Q, = f(x,, x,, ---, % PI. Pzy ---3 PmJ (1) 

where the values of q~, as well as those of the variables xl, x2, _-_, x,, can be measured 

and pl. pt. ---, p,. represent a set of parameters. 
.The problem is to determine the best values of the set of parameters, pI, p2, ._ _, 

p_, the function 1’ king known. 
For simplicity sake, we shall introduce the following notations: 

X‘ = (4. Xi2, ---, * 

p = h Pz. ---9 PJ (3) 

where the subscript i on the leMra.nd side, as well as the same su_oerscript on the 
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right-baud side of the relationship (2), indicate particdar values of the variables 

X1, x2, ---, x, The deviation r, of the function f(X, P) with respect to the &asured 
oIqQ@anbede~edasr 

As we do not know the true value of P, but au approximate one, PC=), the approxima- 
tion of the d+ation ri will be given by: 

R E=fr&*@?J -m (5) 

wime PB, (n = 0, I, 2, _--) are successive approximations of the parameiers R 

By cxpaudirg the function f(X,, P) in a truncated Taylor series about the 
parameters P@BP we get: 

where &p’ is the largest absoIute uncertainty corresponding to the nth order approxi- 

mation of the pi value_ 

According to the theory of the least squares, the most probabIe vaIues of the 
parameters pi are those for which ibe expression: 

Q=,$ (8) 

is at a miuimum, N being the number of experimental points. Taking into account 
relationships (4) and (8), this condition caz~ be written as: 

From eqmtions (9) and (7), it follows that: 

Forj = I, 2, _._, m 

and 

k = I, 2, ---- m 

WC obtaiu a system of m equations in the m UnknOWnS l@” (nOnId CqUatiOnS) 

whose matrix form is: 



’ N af af N af 
I=,& c i z~-~___ii~.~___i~~.~- 

aP1 i=l GPl 
--.-..........,....,............,..~. 

=- gz RiS 
______ 
5 R+ 

_i=1 -_ 

where 

Xi Zff 
-- = DJ_DK 
api apk 

the system (1 I) can be written as: 

DI.DI 

[ 

DLD2 ___ DLDK ___ DLDM - 
_-_ e-m 

DJ_DI DJ_D2 ___ DJ_DK .__ DJ.DM 
.-. _-- 

DM_Dl DM_D2 ___ DM.DK ___ DM.DM _ 

By solving this system, we get: 

p(f+u = p<;’ i- Ap$$),j = 1,2, _._, m 

x 

-Pi 

Pt =- 

1 -p- 

Cl - 

H CJ 

-CM 

‘AP, - 
APZ 

. . - 
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(11) 

!W 

03) 

Taking into account this last result, the best values of the parameters P can be obtained 
by starting with an initial approximation@ and improving it until A@ < Ed, where 
ei is the aclmittcki absoIute incertainty for the measurement of the parameter pr. 
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2 VARIANT OF THE NO?I-LINEAR LJCMZ SQUARES MJZIHOD FOR NON-IsoTtzERMAL ECINEIXS 

If we cannot dire&y measure the cp values, the non-linear Ieast squares tech- 
nique can stih be applied. To demonstrate this statement, let us consider a quantity I 
which cannot be directly measured but can be caIcuIated from the experimental data, 

using the functional relationship: 

ti = RX, P) (14) 

As the Xi vahes can be directly measured, due to experimental errors, they are 
shifted from the true ones, X,, i.e.: 

f(XCP P) f f(Xi* P) = & 

Under such conditions, the deviations ri and its approximation Ri can be defined 
as follows: 

rr = f(X,, P) - f(X,, J? (15) 

Ri = fcx,, P?l - f(X,,. PI (16) 

By choosing the function f so that f(X,, 2’) = 0 and taking into account relationships 
(15) and (I6), we get: 

w&h is analogous to eqn (7). Thus, the results mentioned in former section are still 
vaiid if one changes the approximations Ri into qXL, P]. 

3. TfiE APPLICATION OF THE NON-LENZAR LEAST SQUARE!3 METHOD TO NOS-ISOTHERMAL 

IcmETla 

The general rate equation of the non-isothermal kinetics, in the framework 
of the reaction order model, has the known form: 

(18) 

where j? = the heating rate, a = the conversion degree, 2 = the prezxponential factor, 
E = the activation energy, n = the reaction order, T = absolute temperatum and 
R = 1.986 calK_’ mol-’ 

By integrating eqn (18)* we get: 

F@) = l - f’ - a) l--r 
-n 
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The general form of eqn (19) is valid both for linear and for non-linear heating 
pr0grammes. 

The fimction 1,4, as defined in the former section, has the part.icuIar form: 

@=F(a)-4(-s) =f@,T, n,E,Z)=O 
T p'- 

Taking into account the experimental errors in determining the Zi, T1 values, as well 
as the approximate values of n, E and 2, it follows that $ # 0, Using the non-linear 
least squares method, one can minimize the deviatioas from zero values of this 

function. 
The particular form of system (13) is: 

[ 

DI.Dl 
DZDI 

D3.DI 

where the notations (12) are still vaIid with pl = n, pz = 2, ~3 = 5 ad 

For a linear heating programme: 

r 

z 1 --(QRn) dT = - - 
B RT 

,-WRT) dT 

T 

df %J -= 
62 

__=_$ 
32 

c-=IRT) dT 

0 

X SF 
T&-=7-&= 

n#l 
1 - (I - a)*-’ - [(l - a)‘-‘In(l - a)] (1 - n) 

(1 - n)’ 

n= I 
In’ (1 - a) 

2 

As regards a hyperbolic heating programme for which fl = bT2, 

cw 

(21) 

m 

4 ( - AL) = Z& e--<&iRm 
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-1ElRT) 

ix a& -= R --<EIRT) 
az 

----_~----_ 
zi? bE 

n#l 
1 - (1 - a)‘-’ - [(l - a)*-= I(1 - a)3 (1 - n) 

8f i?F (1 - nj2 
-E-Z 
6th an I n= 1 

In* (1 - a) 
2 

4. FORTRAN PROGRAMME TOCALCULA-ETfEVALUSOFTHE KINErIc PARMSETERS 

On the basis of system (20), as well as of relationships (23) and (24), we worked 
alit a programme whose IogicaI diagram is given in Fig. I. 

The variant of the non&ear least squares method was applied to the non- 
isothermal kinetics of calcium oxalate monohydrate dehydration. The starting values 
of’ the kinetic parameters were obtained by using a hyperbolic heating programme 
(TabIe I)_ 

The smooth convergency of the pre-exponentiaI factor values arc due to the 
very smalf values of ihe de&a&c 
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Irerar~on No. 

1 

2 

3 

4 
5 

AE An AZ 
(kcaI nwt-‘1 l&F SEC-=) 

-0.964 --0223 - 6994 

f- o-038 -1 o.oiz5 G2.720 
- 0.143 - 0.0258 - 0222 

+ om4 + O_fXIlb + 0_039 
- 0.006 f 0.0024 - 0,013 

Final vaIucss E = 17.80 kcd mol-x; n = 0.74; 2 = 1.88 - IV SC-~_ 

Thus the f function is quite insensitive to the changes of the pre-exponential factor 
vaIues_ 

A variant of the non-linear Ieast squares method to evaluate the kinetic 
parameters of the heterogeneous reactions under non-isothermal conditions, was 
worked out_ The method was checked for the dehydration of calcium oxaIate mono- 
hydrates 
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