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ABSTRACT

The non-isothermal least squares method for the evaluation of the kinetic
parameters was generalized to non-isothermal kinetics of heterogeneous reactions.

INTRODUCTION

The kinetics of decomposition of solids is often formally described in the terms
of the reaction order model'. As shown by Norris et al.Z, due to the non-linear appear-
ance of the reaction order, n, in the rate equations, it is difficult to evaluate the
kinetic parameters to whom different reliabilities are conferred, according to the
method used for linearization.

In this paper we try to generalize the non-linear least squares method, applied
by Judd and Norris?, for the evaluation of kinetic parameters from isothermal data,
to non-isothermal kinetics.

I. GENERALITIES

Let us consider the functional relationship:

@ = f(xy, X2, ---» X, P1> P2 ---» P2 (1)

where the values of ¢, as well as those of the variables x,, x,, ..., x,, can be measured
and p,, P2, ---, P, Tepresent a set of parameters.

The problem is to determine the best values of the set of parameters, p,, p,, --.,
Da, the function 1 teing known.

For simplicity sake, we shall introduce the following notations:

X‘ = (xilr x‘Z’ ce=y x:) (2)

P= (Ph P2y --2s P-) (3)

where the subscript i on the left-hand side, as well as the same superscript on the
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,rightJhand side of the relationship (2), indicate particular values of the variables
Xy, X2, ---» X5- The deviation r; of the function (X, I’) with respect to the masumd
one, ¢, can be deﬁned as:

7rl=f(XbP)—'¢l 1 ' @
As we do not know the true value of P, but an approximate one, P™, the approxima-
tion of the deviation r; will be given by:

R, =f[X, P"] — 9, &)

where P, (n = 0, 1, 2, ...) are successive approximations of the parameters P.
By expanding the function f(X;, P) in a truncated Taylor series about the

parameters P™, we get:

= of =
f(X;, P) = f[X;, P*] +‘Zl -E;(,—,-APS) ©)
of -
Rl + Z Ap(.) AP( ! . (7)

where Ap{® is the largest absolute uncertainty corresponding to the nth order approxi-
mation of the p; value.

According to the theory of the least squares, the most probable values of the
parameters p; are those for which the expression:

Q= Z i , @

is at a minitnum, N being the number of expenmental points. Taking into account
relationships (4) and (8), this condition can be written as:

a0 il of,
2 =23 n— =0 ©
P; i=1 ap

" - - -
> [R.+ ZT"%—AP;-)]_"_‘?_-_-O
1

i=1 x=1 Op; ap}-)
d af, =1% & af
R £ + [ i & ] A (] _ o IO
i=Zl 4 ap(l) P i=zl aP}') ap;l) Px ( )

Forj=12 ....,m
and
k=12 ._,m

we obtain a system of m cquations in the m unlmowns Ap? (normal equatlons)'
whose matrix form is:



B K. % a;, e L & o | [ 4p]
=1 0py Opy <1 6Py Op, iS5 0py Opr 51 0Py Opm 4ap,
N & . of; Noof f'}f; g: f)f, i :’Ef, 3 %: of; _b‘f; x| 4p |=
i=1 Op; Opy 4=1 Op; Op2 =i Op; OPx =1 OP; GPa
N N - ~ N =~ - N - -
of, af; of, of, of; - ¢f;  6f;
> 2 R - . B 4p.
| i1 OPm OP; <1 P OP: i=1 OPm Px i=1 ODn OPn,_| » ]
— o, |
i=1 ! apl
= — R an
t=zl ' ap;
R;
__t=zl ap-_
where
al} — af[xis P‘.)]
ap,. 6p}"
Introducing the notations:
N e ~
& 2% _ pyipk
=1 Op; Gp:
{12)
N -~
of;
R, = (7,
i=21 ' apj
the system (11) can be written as:
DI1.DI D1.D2 .. DILDK ... DILDM | [' P: C1 |
DIDI DID2 ... DIDK ... DIDM [x]|pel=—10C) (13)
| PMDI DMD2 .. DMDK .. DMDM| |p. | cM

By solving this system, we get:

BT =P + AP = 1,2,y m
Taking into account this Iast result, the best values of the parameters P can be obtained
by starting with an initial approximation p{>? and improving it until Ap{? < g;, where
g; is the admitted absolute incertainty for the measurement of the parameter p;.
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2. VARIANT OF THE NON-LINEAR LEAST SQUARES METHOD FOR NON-ISOTHERMAL KINETICS

- If we cannot directly measure the ¢ values, the non-linear least squares tech-
nique can still be applied. To demonstrate this statement, let us consider a quantity ¥
which cannot be directly measured but can be calculated from the experimental data,
using the functional relationship:
¥ =f(X,P) (14

As the X; values can be directly measured, due to experimental errors, they are
shifted from the true ones, X, , ie.:

(X, P) # (X, P) = ¥;

Under such conditions, the deviations r; and its approximation R; can be defined
as follows:

= (X, P) — f(ti P) 15)

R; = f[Xi" P(.)] - f(X,,, P) (16)

By choosing the function f so that f(X,, P) = 0 and taking into account relationships
(15) and (16), we get:

= ple = SN
=R+ 2 —=4p7 =X, Pl + 3 —= A4p§ an
i=1 0Op; i=1 opj

whxch is analogous to eqn (7). Thus, the results mentioned in former section are siill
valid if one changes the approximations R; into f[.X;, P*™].

3. THE APPLICATION OF THE NON-LINEAR LEAST SQUARES METHOD TO NON-ISOTHERMAL
KINETICS

The general rate equation of the non-isothermal kinetics, in the framework
of the reaction order model, has the known form:

dx

p—ﬁ-_ = Ze ERD(} _ o) , (18)

where B = the heating rate, @ = the conversion degree, Z = the preexponential factor,
E = the activation energy, n — the reaction order, T = absolute temperature and
R = 1.986 calK ~* mol™*

By integrating eqn (18), we get:

where

F(!) — s e ¢ B a)l—.

1—n
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The general form of eqn (19) is valid both for linear and for non-linear heating

programmes.
The function ¥, as defined in the former section, has the particular form:

V=FD-¢(-1r) =@ nE2Z=0

RT ——— e
x P

Taking into account the experimental errors in determining the x;, 7T; values, as well
as the approximate values of n, E and Z, it follows that { # 0. Using the non-linear
least squares method, one can minimize the deviations from zero values of this
function.

The particular form of system (13) is:

D1.D1 D1.D2 D1.D3 I‘An Cl1

[DZ_DI D2.D2 D2.D3] x AZ] = — [CZ] (20)
D3.D1 D3.D2 D3.D3 lAE C3

where the notations (12) are still valid with p, = n, p, = Z, p; = E, and

N -
CK = f; —_—
i=zl ap,

For a linear heating programme:

T
(- mr) == [eemnar @n
o
T T
of 6 __Z [ 6 -emnygr_ 2 1 J' ~(EIRT)
PE- T GE " TJ-HE’(" T Vil =
0 0
T
ot = — ki = — 1 e EIRD T
6z Z B J L (22)
n 1l I—-(—-a)'""~[1—-a)""In(1 — Il —n)
o oF _ ( —n)y*
on én . In? (1 — )

2

As regards a hyperbolic heating programme, for which § = bT?,

¢(-— E )= s e @
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of __dp_Z R (1 1 )-e;,',,.,m
dE J9E b E\E ,
o __ 8 _ _ R _emn
oz oZ bE
(29)
— - _ . 1—= — -
| g1 10— ¢! ) Tl ~ 1A = n)
of _GF _ a—n
Gn o e
sy WO-a

2 : J

4. FORTRAN PROGRAMME TO CALCULATE THE VALUES OF THE KINETIC PARAMETERS

On the basis of system (20), as well as of relationships (23) and (24), we worked
otit a programme whose logical diagram is given in Fig. 1.

Fig 1. Logical diagram_

5. EXAMPLE

The variant of the non-linear least squares method was applied to the non-
isothermal kinetics of calcium oxalate monohydrate dehydration. The starting values
of the kinetic parameters were obtained by using a hyperbolic heating programme
(Table 1).

_ The smooth convergency of the pre-exponcntxal factor va!us arc duc to thc
very small values of the derivative - :
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TABLE 1

THE STARTING VALUES, THE CORRECTIONS FOR FIVE ITERATIONS AND THE FINAL VALUES OF THE KINETIC
PARAMETERS FOR THE CALCIUM OXALATE MONOHYDRATE DEHYDRATION

Initial valucs: £y = 18,86 k<2l moke; no = I; Zo = 6,35 - 10° ¢ 2,

Iteration No. 4E An a4z
(kcal mol-1) (105 sec1)
1 — 0964 — 0223 — 6994
2 + 0.038 — 0.0125 +~ 2720
3 — 0.143 — 0.0258 —0.222
4 + 0014 < 0.0016 < 0.039
5 — 0.006 + 0.0024 — 0013

Final values: E = 17.80 kcal mol-*; n = 0.74; Z = 1.88 - 10® sec L.

of [ of _-,)
F74 (az =~ 10 J
Thus the f function is quite insensitive to the changes of the pre-exponential factor

values.
6. CONCLUSIONS

A variant of the non-linear least squares method to evaluate the Kkinetic
parameters of the heterogeneous reactions under non-isothermal conditions, was
worked out. The method was checked for the dehydration of calcium oxalate mono-
hydrate.
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